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PREFACE

This ?aozaiduhm discusses the results of a study to determine

the nature of the radar return from laminar vakes. It Is Intended

to supplement the knowledge of high-altitude re-entry phenomenolog.

The author is a consultant for The ?AND Corporation. The results

presented herein should be of general interest to those in the field

of aerodynamics and electromagnetic theory.

___________



SLOWARY

This Memorandum outlines the min aspects of the problem of com-

puting the radar echo from re-entry vehicles, priarily to indicate

what types of radar-return estimates can be made using presently

available results from the gasdynamic theory of wakes and from elec-

tr agnetic theory. Numerical results for low-frequency reflectivi-

ties and radar cross sections are obtained for a particular computed

re-entry wake viewed broadside. 7he resulting radar cross sections,

although orders of magnitude greater than the radar cross section of

the vehicle with no wake, are smaller than the broadside geometric

cross section of the wake region within which the local plasma fre-

quency is greater than the radar frequency. Some specific electro-

magnetic problems are outlined, the solution of which would aid in

obtaining results better than the crude estimates presently achiev-

able.

11I
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SYMBOLS

-umagnetic field strength

C - cosine of angle between thi incident propaation direction
and the negative z-axis

c - velocity of light in a vacuum

- incident electric field strength

i - scattered electric field strength

-E electric field

e - electronic charge

G - antenna gain

H = enthalar

H- mgnetic field intensity

J - effective magnetization current
m

kM - phase constant

kX - attenuation coefficient

X - Mach number

R - associated magnetization

m M mass

m - electron mass
e

N 0- nmaber density of electrons

n - index of refraction

P - aplitude reflection factor

S- net power received

Pt - trnsamitted power

p - pressure, in atmospheres

R - Howarth radial distanceI _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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R = perpendicular rance from the radar to the trail0

r° w body radius

S = function given by Eq. (21)

T = fluid temperature

U - velocity

v = particle velocity- integration volume where n - 1

x = axial distance increasing down the wake

S= polytropic coefficient

P(x+l) = gamma function

7' = effective ratio of specific heats

Co M free-space permittivity

v - collision frequencies of electrons

P = density: distance from the scatterer

w = 2rT times radar operating frequency- radian frequency

wp = radian plasma frequency, proportional to INe

= curve fitting parameter

= radar cross section

CD = d.rag coefficient

Subscripts

m = reference condition in an isentropic process

s - stagnation value

= unperturbed value except when used with x; x is the
mini=um value at which the pressure in the vale can be
taken as p - pe
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I. INTRODUCTION

The wakes we are concerned with are mixtures of neutral molecules

and atoms, ions, and electrons. When an electromagnetic (e.g., radar)

wave is incident, the electric field, E, and magnetic field, B, exert

forces on the electrons and ions. At all radar frequencies th• In-

ertia of the ions is such that they are not appreciably accelerated,

but the much lighter electrons respond to the field. They are accele-

rated and reradiate to cause the radar return or echo. In computlng

this effect, only the I field need be considered because the force

exerted on a charged particle by the B field associated with E through

Maxwell's equations is a factor v/c less than the force exerted by the

E field, where v is the particle velocity, and c is the velocity of light

in vacuo. Furthermore, at radar frequtncies the effects of the earth's

magnetic field can generally be neglected.

For any point along a vehicle's re-entry trajectory, the problem

of computing the magnitude of the reradiation for a given incident elec-

tromagnetic field requires two quite different lines of research.

The first line determines the number densities of the electrons, N ,

and their collision frequencies, v, for momentum transfer to neutrals

as functions of position in the wake. The second line, using the data

generated by the first, determines the reradiation and hence reflectivi-

ty and radar return. With the present state of knowledge, only rough

estimates or bounds on N eard v are available. Nevertheless, thee

electromagnetic theory is no better off, for only rough estimates of

radar return are possible for those distributions of N and v associ-e

ated with the wake. Approximate methods must be used, and to determine

what approximate approaches to use, some idea of the spatial variation

of V/w and of w /w is needed. Here w is the radian plasm frequency

which is proportional to AIe, while w is 2rT times the operating fre-

quency of the radar. In Section II, methods for computing the necessary

approximate distribution of N and v are outlined and numerical resultse

given. In Section III, the various approaches to the electromagnetic

problems of determining radar cross section are discussed. The results
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of Sections II and III are combined to yield reflectivities and radar

cross sections in Section IV. Section V consists of a discussion of

the electromagnetic problems which should be solved in order to obtain

a more complete picture of the interaction between the radar and the

wake.
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II. ELECTRON AND COLLISION FREUENCY DISTRIBUTIONS

We will consider, in this section, the distribution of electron

density and collision frequency in the laminar wake behind blunt, non-

ablating bodies. The wake will be taken to be in thermodynamic

equilibrium. This model corrvsponds to that used by Feldman and

Lykoudis(2) and presents several restrictions on the flight regime

which render the numerical examples calculated in this section some-

what unrealistic. The techniques, however, my be extended to other,

more realistic cases by modification of the gas dynamic model.

The criterion of thermodynamic equilibrium is necessary in order

to calculate the electron density with any sense of confidence. This

will occur, for a body of one ft nose radius, at about 100,000 ft

altitude, where the recombination rates are sufficiently fast to keep

the gas in equilibrium even though it is cooling rapidly by its ex-

pansion around the body and in the wake. Above this altitude, say at

200,000 ft, the flow is frozen, and the ionization level is close to

that at the stagnation region.

Turbulence, which would generally lower the electron density by

increasing the cooling rates, is not considered here, although the

altitude regime chosen for the numerical example is more likely to

produce a turbulent wake than a laminar wake. An additional possible

effect of turbulence on the electromagnetic problem is discussed in

Section V. Ablation products, which in many cases will be abundant,

are also not considered. Although the electromagnetic problem for a

wake containing ablation products would be treated in the same way,

the values of N occurring can be quite different. The flow probleme

in this case is more complicated, since the effects of the boundary

layer could not be neglected as they otherwise can be.

For the equilibrium case electron densities in the wake have

been calculated by Feldman.(1) For this Memorandum an attempt was
made to use the work of Lykoudis,(2) which contains an ana()ic ex-

pression for trail enthalw, to develop a primarily analytic (and

hence general) method of determining the electron density in the region
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where trail cooling is primarily by conduction. In the end, however,

it was found necessary to resort to a numerical approach pretty much

like Feldman's, but with some simplification, most of which is due to

using Lykoudis' results. The present numerical results, are in close

agreement with those of Feldman (to the extent that they can be scaled

off his published curves of constant N contours).e

The electron density is a function of the thermodynamic variables

p and T, where p is the density and T is the fluid temperature. The

collision frequency, on the other hand, is most conveniently expressed

as a function of p and T, where p is the pressure. A suitable equa-

tion of state for high-temperature air my be used to relate p, P,

and T. The pressure and temperature in the wake are obtained from

the various gas-dynamic calculations mentioned previously. (1,2)

%karofsky(3) has correlated extensive experimental data on the

collision frequency which show that in the temperature range of ap-

proximately 18000 K < T < 3400 0K, v/p can be taken as a constant" i.e.,

v - p x 7 x 10 1 0  ()

where p is in atmospheres. The pressure along the axis may be approxi-

mated by use of Sakurai's second-order blast-wave theory as given, for

example, by Lykoudis(2) in terms of the free-stream Mach number, M,

and the body radius, r

= 0.1330 M + 0.405 (2)

Here x is measured from the stagnation region, and the formula

is valid from the nose at x = x to the axial position x = x

M2 ro/4.5 where p has decayed to the free-stream pressure, p. For

greater values of x, p remains equal to p, there is no flow expansion,

and trail cooling is due to heat conduction alone. The accuracy of

Sakurai's theory has been exhibited by Feldman, ( who compared numeri-

cal axial-pressure results with results computed by exact theory using

the method of characteristics.
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Values of electron density for air in equilibrium may be obtained

from Gilmore's tables and graphs(5) or from Feldman.(l) In the range

25000K < T < 70000 K, the numerical results for Ne can be fitted within

a factor of approximately two by

N _e 0 .7 lo(T x 10-3 + 15), M 3  (3)

where T is in OK, and Po a 1.29 kg/m3 is the density at 273 0 K and

1 atm pressure.

In order to evaluate Eq. (3), a relationship between T and x

must be obtained. For the expansion region of the treil, xs < x <

cooling takes place adiabatically by a purely isentropic, or constant-

entropy, process. For air, Logan and Treanor( 6" have calculated the

polytropic coefficients y' and a for an isentropic process as functions

of entropy which relate the state variables p, p, T, and the enthalpy, H,

through the following equations*

(14)

T m kH )

As a practical matter, since it is necessary to compute the

entropy or read it from shock tables in order to obtain the proper

values for y' and a, there is no simple, purely analytic way to de-

termine the variables from the free-stream pressure even with the help

of the blast-wave equation for pressure. For specific numerical re-

sults it is probably Just as easy to use a Mollier diagram as it is
to use the above equations.

So'an and Treanor write Bq. (4) with different constants
Y' and Y" for the p and p ter2m, but give almost identical numeri-
cal values for them.
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Since the wake will be expanding in a radial as well as an axial

direction, the temperature, and hence the electron density, will vary

in that direction as well. It appears 4) that the various approximate

theories give only very poor results for flow parameters off the axis

for regions very close to the shoulder. However, numerical values

obtained by the method of characteristics are given by Feldman in

Ref. 1.
Lykoudis(2) developed the following equation for the enthalpy at

x - x in terms of the Howarth radial distance R from the axis

(x ..r)Hr 1O (5)
H (x, 0) - H ( + 1 0-r 7

" +2-56 c Do)

and compared it with a Gaussian approximation

H (x?, r) - (6)

used by Feldman in Ref. 1, which drops off a little faster with r.

In these equations, H is the enthallp in the undisturbed atmosphere

at the altitude in question. The Howarth radius, R, is related to

the physieal radius, r, by

2r

r 2  "2 Cp /P (R)] R dR

For x > x the axial enthalpy distribution is given in a uni-

veral form by Lkoudis as

H ( ; , o ) - H .- 1 7B(0,O0-i) 1 (7)___oo__-_ "U i •)'
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where 1

£H (o, o)/R x -x

x l~ U0 Cr 2

Dro

and centimeter-gram-second units are to be used.

With the radial enthalpy distribution at the point x - x given

by Eq. (5), the radial enthalpy distribution at any x could be ob-

tained from Eq. (7). However, if the less accurate Gaussian form,

Eq. (6), is used, the corresponding enthalpy ratio for x > x must

have the form

(x,) M - 1 exp ?~2~ (8)
H e (i)

Then e(i) will be chosen to make Eq. (8) match Eq. (7) on the axis.

In the range x > x Eqs. (2) and (4) do not hold, and the only

reasonable way to get T and p and thence Ne is to follow the log

pC/p 0 - const. curve on the Mollier chart using Eq. (7) for the en-

thalpy. This has already been done along the axis in Ref. 2.

To get the radial electron density we equate

1 1 (9)

and use this in Eq. (8) to find the values of enthalpy to enter the

Mollier diagram. Eqs. (8) and (9) agree with Eq. (6) for CD '.

The outline of the computational procedure Just presented makes

it clear that analytic formulas directly yielding the electron-density

contours are not available from present flow computations. One must

compute the density contours, and then perhaps reasonable empirical

formilas can be fitted.

Numerical results for an altitude of 100,000 ft and a velocity

U - 20,000 ft/sec follow. Reference 7 shows that the unperturbed
U
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values (subscript w) and stagnation values (subscript s) are*

p, - 1.102 x 10"2 atm Ps 6.33 atm

0. - 1.385 x 10-2 o Ps -0.1 8 3 Po

T - 218'K T - 693 0°KS~S

H HC - 2.783 -- 239o 0

The shock tables yield an entropy S - 2.86 cal/im-0 K. With this value

one can enter Logan and Treanor's graphs for the polytropic coefficients

and find that y' - 1.13, and a - 0.7. At x - x, p - p., and from
Eq. (4), T - 3300°K. The Mollier diagram yields about 32000 K, which

is certainly sufficiently consistent. The value of p corresponding

to a temperature of 3300 0 K is given by log [p (x )/po] a -3.05 for
16w30which the graphs of Ref. 2 yield Ne - 2.4 x 10 /m3 while, for comparison,

the approximate formula Eq. (3) yields Ne - 4.8 x 1O16/m3.

This is the electron number density on the axis where p - p., which

occurs at x. - 93.1 ro, since M. - 20.5. The normalized enthall:y

H (x.,O)/RT° - 86 so that x, the normalized distance used in Eqs. (7)

and (8) for the enthalpy variation, is given by

X- X
6.7 x 102 C (1o)r2o

C~r

where lengths are to be expressed in centimeters.
To delimit the region in which values of N should be computed let

e

us assume that the main radar return is from the region in which, as
will be discussed in Section III, wv < w2 . The collision frequency

V(XO) - 7.9 x 108 cps for p. + 1.1 x 10 '2 and v will remain essentially

*Note that with the present notation, p - p(x.), but H W H(x W
2 p(x), etc.
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constant until the trail cools to T Z 1800 K. For various reasons*

one would expect that the lowest frequency which will be used by

the radar will be of the order of f - 108 cps. On this assumption

a lower bound for NeN values of interest would correspond to Wp - 10 8

or N 3 x 1o6//3.
Figure 1 presents a family of curves of Ne versus r/ro with x

as parameter, for an altitude of 100,000 feet and a velocity of
20,000 ft/sec. From this data a set of curves of Ne/Ne verus

r/r° were computed. These are shown in Figure 2. On e curve is

superposed one or two curves of S - sedi2  W r for values
of a as indicated on the curves. These will be used to aid in esti-

mating radar return (see Section III, pp. 17, 18).

*One reason is that, if f is lower than - 2 x 10 7 cps the radar
will be unable to penetrate the F layer of the ionosphere even at
vertical incidence to acquire and track objects above the ionosphere.
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n o no alized lal

distance (See q. 10)

E

i 2.
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10 1.0 2 .0 "T -W13.0 4.0

Fig. In Electron number density as a function
of radial distance frorn axis.
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III. RMFIECTIV=TY AND RADAR REURN

The radar beam and its echo are electromagnetic waves; that is,

they are composed of fields of electric intensity, E, and magnetic

induction, B, which are related by Mexwell's equations. These equa-

tions are most conveniently written for the present problem as

curl - -E

Here c is the velocity of light in free space and n is the index of

refraction. We shall consider time-periodic fields of radian frequency

' so that time variation can be separated out in a factor e . At

each point the index of refraction is a function of w, wp, and v.

It is determined by considering Eq. (11) coupled with the equations

for conservation of number of electrons and ions, and of conservation

of mcmentum. By not having n2 operated on by B/at, we are tacitly

assuming that time variations of n2 are negligible over a period of

the order of the time a radar pulse spends in the wake. In addition,

Eq. (11) assumes the medium is homogeneous and isotropic and that

the permeability is constant everywhere. To the writer's knowledge,

there are no exact solutions of Eq. (11) for regions of continuously

variable n except for certain one-dimensional problems. Hence for

results at this time, approximate methods will have to be used.

Much of the directly applicable theory has been developed by

workers in ionospheric radio propagation, so that the notation frequently

used in that field will be adopted here. * The index of refraction is

a complex quantity when e-twt time-dependence is used and is written as

n - g + ix (12)

*The notation and much of the material in this section up to Eq.

(22) plus t supporting analyses are conveniently found in a monograph
by Budden. 8
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A plane electromagnetic wave propagating in the z direction through a

uniform medium of index n is a solution of Eq. (11) which has the form

E (Z' t) = 0Z e ik e-kXz e-i t (13)

- Ao

and for which Eo0  z - 0; that is, vector 0 is perpendicular to the

unit vector z in the z direction. In Eq. (13), k - w/c - 2n/k° is
the free-space wavelength. By means of Eq. (13) a physical interpre-

tation of n is made evident; kg represents a phase constant and kX,

an attenuation coefficient for plane waves in a uniform medium. In

free space, X - 0 and P = 1.

If the electric field expressed by Eq. (13) is connected with

electromagnetic field H so that it contributes to electromagnetic

radiation via Poynting's vector E x H, then E 0 "z = 0. However, in

plasmas, additional E fields of the form of Eq. (13) can exist, but

for which 0 " z # 0. These so-called longitudinal or plasma modes

can greatly affect the distribution of energy within the plasma;

although far from their sources, they are not paired with a magnetic

field so as to radiate electromagnetic energy (zero Poynting vector).

It is necessary to determine whether such modes can be expected in

the wake plasm. If so, they would certainly influence the reradiation

pattern since incident electromagnetic energy can be transferred to

and from such modes by various mechanisms that have been the subject

of much study in the literature. Whether these longitudinal modes

can exist or propagate at the frequencies of interest is a function

of the physical properties of the plasm which, for this wake problem,

were determined numerically for the wake in Section II. These proper-

ties can then be used to evaluate criteria formulated by Denisse and

Delcroixtg) for the existence of the various propagation modes in a

plasma, which indicate that one would not expect such modes. In fact,

one is in a region where only transverse electromagnetic propagation

is to be expected. Moreover, since magnetic-field effects may also be

neglected, barring possible effects of turbulence, the index of re-

fraction, n, for these electromagnetic waves is quite simple in form.
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The electron nmuber density, Ne, enters the expression for n

only in combination with the electron charge, e; mass, m; and the

free-space permittivity, co; to form a frequency

N e2

w - m (14)

which one can show is a natural frequency for coherent oscillation of

the plasma. It is convenient to work with variables normalized by

the radian frequency, w

w2
x - -- z (15)

Then

n2 1 X (16)

Let n2 - er + ici, where n2 is commonly called the complex dielectic

constant. Then

X
r 1 - +Z 2

(17)
ZX+zx

C, l+Z 2

and p and m a be computed from

- ~ (~r ++ 2)1/2
(18)

r r 1
- 1/2

+ + C2 ,2
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From Eqs. (17) and (18) we can got a feel for the situation in

which 1A and X differ appreciably from the ambient values. We have

r- 1, and e I 0 so that I--i and y-0 (the values for a vacuum)

whenever

Z2 >> X, i.e., v2 >>
P

On the other hand, er and eI can differ appreciably from c r ~ 1 and

Ci - 0 when

Z- X, i.e., ON- "
P

or when
Z < X, i.e., wv< w2

p

The equality Wv - w 2 defines a situation in which v may exceed wp p
so long as w is less than wp; i.e., w < w p< v.

The commonly used idea of perfect reflectivity at a constant Ne
surface corresponding to w - w stems from the formula for the ampli-p
tude reflection factor, P, for normal incidence of a plane wave onto

a plane interface separating homogeneous media of refractive indices

n1 and n2

PM n 2 -5 n(19)
n2 +n1

Let n1 - 1, corresponding to free space for medium 1. If collisions

2are neglected,, Z << 1 and ni a 1 - X. Mhen if X X• 1, n2 'a Purely

imaginary and I PJ - 1, indicating complete reflection of the energy.

It Is Important in the present wake problem to observe that

"this conclusion is suc modified mben Z Is not negligible coqiared

to umity. In this cae, the surface 0 eresponds to 1 Z and

p Y V -47 For simplicity, let na 1 - alin In Sq. (19) for F; then
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IpI~2 _ o • 1)2,+ •2<
CPIr m 0 - )2+g

P. =Z/2

Table 1, which presents I PI - 0 versus Z, illustrates that from the
Cr 0

point of view of reflectivity, surfaces corresponding to constant

plasma frequencies are of little significance when the collision

frequency is within a factor of about 100 from the operating fre-

quency. Note, however, that a sharp boundary with unity index on

one side is not a realistic model for plasmas. For large Z there

would be, in a more realistic case of no sharp boundary, very great

absorption of the energy before the surface cr - 0 is reached.

Table 1

z I I' -0 z IpI2 -0
r r

0.0002 0.96 2.0 0.20

0.005 0.82 8.0 0.40
o.o2 0.67 200.0 0.82

0.08 o.465 450.0 0.89
1.0 0.17 8oo.o 0.91
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The reflectivity considerations are also much modified by the

fact that, in a plasma, there are no such discontinuities as those

that led to Eq. (19). In fact, the reflectivity is a functional of

the gradient of N in the direction of propagation. As will be shown

below, however, even in the one-dimensional case, where N varies

with X at a constant Z, it is a considerable mathematical problem

to determine the reflectivity and the related transmissivity. In

general, asymptotic procedures -must be used to pick out and relate

appropriate solutions of the electromagnetic-field equations. In

particular, solutions have been obtained for a wide class of these

curves known as Epstein profiles plus generalizations of them by

Rawer. (10) Included in this class of profiles are the so-called

sech2 profiles

n2 1 - iZ sech (z - zm) (20)

so that

X - Xm S(z- 7m; ; S = sech2{ 1(z - Z)} (21)

Here a is an arbitrary parameter.

This is a profile, symmetric about z - Z., and representing a

plasma layer. The reflection factor for normal incidence and*E

parallel to surfaces of constant electron density is given by

r(-21)cZ +1) r(Wac - 7 -) r(ic + 7 +
r(2i( c, +1) r(-y + ) r, +) (22)

where

16 k2 52 X.m- 1 iZ 2

K-i
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N(x + 1) is the gamms function, and C is the cosine of the angle

between the incident propagation direction and the negative z-axis.

This complicated formula has been extensively investigated numerically

by Rawer, who gave curves of I P1 versus w/w 1 for various values of

V/W1 and Sl, where - w - z M ) and S - 2 wlc- His results

clearly illustrate the sensitivity of P to v and to the gradients of
N e. Besides illustrating the sensitivity of reflectivity on the de-

tails of the plasm layer, the Rawer results could be used to give

local reflectivity as a function of axial distance along the trail.

The computations of the previous section yielded values of Ne and v,

which determine X as a function of r where r is the radial distance

from the trail axis. One can equate r with z - z of Eq. (20) and

use the parameter a to fit the distribution of Eq. (21) for X to that

of the computed X distribution.* Depending on the X and Z values, P

Way be obtained directly from Rawer's curves. If not, P can be readily

computed fron Eq. (22) with the help of tables of the complex game

function.

Ionospheric problems are by no means the only ones where one-dimen-

sional propagation in a medium of varying n has been investigated. It
has been of interest to others for application to precisely the same type
of problem as the present vehicle-wake investigation: for microwave di-
agnostics of plasmas in fusion machines, ballistic ranges, shock tubes,

etc., and for the design of radar absorbers. For example, Albini and Jahn

have computed numerically a large number of curves of reflectivity and

transmissivity for various degrees of lossiness of the plasma as

measured by ei and for ramp and trapezoidal variations of er.

These curves cover regions where WKB analyses break down (as they will in

all the trail problems of interest) so that the analytic treatment becomes
difficult, as Ref. 11 illustrates; therefore, numerical methods are used.

On the other hand, the distributions shown in these curves have discon-

tinuous gradients that introduce reflection and interference phenomena

which would not show up in a region where the gradient varies smoothly.

The effect of discontinuous gradients and gradients that cause MB asympto-

tic approximations to fail is discussed in various parts of Ref. 8 (see

*This process is illustrated in Fig. 2.
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for example Section 17.4), and the fact that a discontinuity in the

electron-density gradient actually changes the reflection coefficient

by an order of magnitude is discussed by Schelkunoff.(13)

Much numerical and theoretical work has been done by Walther, who

was interested in radar-absorber design. This work(14) was mainly

concerned with varying dielectric-material parameters. Most of the

analysis is based on the theoretical work of Barrar and Redheffer,

described primarily in Ref. 15. Principles and techniques similar to

those of Barrar and Redheffer have been tentatively applied to prob-

lems of this type by Bellman and Kalaba, 16) who introduced the term
"method of invariant imbedding" for their work. The technique of

invariant imbedding leads to various differential and integral equa-

tions wnich can be solved numerically, for example, to obtain the

reflection factor as a function of penetration distance into a non-

uniform medium.

At the Second Symposium on the Plasma Sheath, Boston, April 1962(17)
(sponsored by AFCRC), C. M. DeRidder and S. Edelberg reported the
results of very extensive and instructive machine calculations of the

reflectivity or backscattered energy per unit length for plane waves

incident normLly on an infinite plasma cylinder with uniform proper-

ties in the axial direction. Various analytic forms and numerical

values were assumed for the index of refraction as a function of the

radial distance from the axis. The E vector or H vector was taken

parallel to the axis. The reason that this problem is especially

adaptable to numerical solution is discussed in Section V, as are the

difficulties of generalization.

How to use the reflectivities in determining radar return from

the wake is a considerable problem, since the returns associated with

much sinpler problems involving either well-defined perfectly reflect-

ing bodies or uniform dielectrics cannot really be handled at present

except by approximate methods. Even the extensive numerical work of

Ref. 17, for example, gives unrealistic results when applied to the

wake problem, since the results show the power that would be received

per unit length by an infinitely long antenna aligned with the infinite
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cylinder. Mis type of difficulty and a partial solution is discussed

by Brysk.(1 8 ) However, this difficulty is in a sense an artificial

one, since in the ybysical problem the wake is finite.

What we shall do is realize that the wake is of a fairly restricted

effective length when viewed near broadside and thereby avoid the diffi-

culties in interpreting infinite-cylinder results. The numerical re-

sults in Section IV for reflectivity, JPJ, show that for x up to some

fairly well-defined value .. the reflectivity does not vary greatly

and that for x> xm it drops rapidly to very small values. The trail

for x > X. will therefore be neglected, while up to x Zn it will be

considered to be cut into elementary segments dx. These segments do

not have well-defined ends of discontinuous electromagnetic properties

which would be dominant scatterers; if they did, the discontinuities

would combine to give pronounced resonant effects that would depend on

the length. Such cylinders, if perfectly conducting, could be treated

as so-called thick cylinders as is done in detail by Yentzer.(19)

Their radar cross section is roughly

da M d-) (ka) (23)

for broadside incidence, where s(ka) oscillates in the shaded region

of Fig. 3 about the line of 45-deg slope and converges asymptotically

to this line. The upper bound is reached for E parallel to the symaetry

axis; the lower bound occurs when H is parallel to the axis. Here k

is the 2ff/free-space wavelength and a is the cylinder radius.

Recalling the basic definition for radar cross section a

a - 4PT lim P2 1E 1 (24)

where p is distance from the scatterer, and where E and e are the

scattered and incident field strengths, we see that the magnitude
of the scattered field is then proportional to IF To account for

the fact that we have, in fact, a nonperfect conductor so that
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Eq. (23) cannot be used unmodified, we will do two things with only

tenuous justification in order to get an effective scattered field.

We will first decide what to use for a. In those cases where

the surface corresponding to the plasma frequency (r - ra) is a very

highly conducting surface, we could use a - rc. To do this requires

that operating frequencies corresponding to a range given roughly by

0.01 < < 100 be excluded, as shown by Table 1, since within this

frequency range there is no reason to expect a critical-density con-

tour to behave in arn way like a perfect conductor.

When the plasm frequency is such that a - rc has not much

physical significance, what is probably the next best choice is

based on noting that the N versus r curve must have an inflectione

point at some value r - ri. The major part of the reflectivity must

come from the region r < ri, since it is in this region that the

steepest gradients of Ne exist. This suggests using a w ri, which

is done in Section IV. The second modification is to multiply

ac (kri) by P to take into account the reflectivity. The justifica-

tion for simply multiplying V by P is that Refs. 20, 21, and 22

show by experiment, theory, and computation that the radar cross

section for uniformly coated, perfectly conducting cylinders and

spheres is approximately the radar cross section for the perfectly

conducting object multipled by the power-reflection factor for a

half space of the coating material. This approximation improves as

ka increases, but it is good for ka not much greater than one if

only order-of-magnitude results are wanted, which is the most we can

hope for by this procedure.

The result of the above assumptions is to approximate the radar

cross section of the trail section from x - 0 to x - x. by

Cr 
12

o - A Ir~ JPI exp Carg P + M] C (25)
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In addition to a phase of P, the phase kA due to variation in

path length from the source to the integration points x > 0 is in-

cluded in this integral. If R is the perpendicular range from the

radar to the trail when the region about x - 0 is viewed broadside

x 2

2R

The effect of antenna-gain pattern can be included in the factor

INI.
If the effective trail is long enough, the ac for off-broadside

incidence should be used. This is available in Ref. 19. Similarly,

P for off-broadside incidence (C ý 1) should be used with a bistatic

diffraction-pattern correction.

The contribution to returned power from regions in the wake

where P - 0 will not be zero, although such echoes will be relatively

smll per unit length of trail compared to regions where Eq. (25) is

usable. However, under some oases such regions may dcminate the net

return, for exwqple, because the denser wake regions are not being

irradiated.

In regions where n2  1 1, refraction and phase retardation are

negligible, and we can set up an integral for the radar return from

the individual electrons. The backscattered energy reradiated by

an individual electron per unit solid angle per unit incident power

density is

e " e 4/(T C0 m c2)2

Here e is the electron charge and me is the electron mass. The net

power received, Pr' for transmitted power, Pt, is

2 a Pt JG ,- 2 ikrNdv 12 (26)
r l&T2 r2 e
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where G is the antenna gain and r is the distance to the scattering

electron. Equation (26) is a volume integration rather than a line

Integral, since the contributions from each cross section have not
been integrated In advance as they essentially were in Eq. (25) by

the use of P (x). The integration volume, v, refers only to the

region where n - 1. Equation (26) has been used to determine radar

scattering from satellite rakes(23) and, in Ref. 24 and elsewhere,

from low-density meteor trails. Contributions to the echo from other

regions must be handled either approximtely by Eq. (25) or by other

means--for example, by a hybrid method introduced by Brysk(25) to
handle scattering from overdense meteors.
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IV. RFLECTIVITY AND RADAR CROSS-SCTION NUMMICAL RESULTS

The reflectivity factor P given by Eq. (22) was ccmputed* as a

function of x for two frequencies, f - 2 x 107 and f - 108. The fre-

quency f = 2 x 107 is about the lowest that can be expected to pene-

trate the F layer of the ionosphere at normal incidence and hence is

most likely a lower bound on frequencies which might be adopted for

tracking re-entry objects. Figures 4 through 8 give IPJ, nJ PJ,

arg P, cos(arg P), and sin(arg P) for f - 2 x 107 cps, while Fig. 9

through 13 do the same for f -10 cps. In each case, there is a
substantial trail region x < x wherein I P1 does not vary by more than

an order of magnitude. For larger x values it then very rapidly de-

creases to insignificance. However, even over the region where 1PI

is not insignificant, the phase of Re(arg P) changes sign several

times so that there is a tendency for the echoes from successive

sections of the trail to be out of phase with each other and to

partially cancel their respective contributions to the net return.

In addition to the above curves, we have also computed one value

of P for x -0, f - 101. The result is -in JPF - 1544, arg P - 15.8.

To obtain some radar-cross-section values we have used Eq. (25),

assuming A can be neglected because of the large range. From the

inflection point of the curves in Fig. 2, a was taken to vary from

2.25 ro to 2.8 ro as I increased fromx- 0 to x-x.. For this

rough work we could simply take an average a - 2.6 ro and hence

factor s(ka) out of the integral. The integration was carried out

in terms of the dimensionless variable x related to x - xo via

Eq. (10). Further, the contribution of the region for x < x was

not included. The actual formula evaluated for C was

2 2Tr " 6.7 X 10"2 )~ a I

*Numerical values of the comlex r function were obtained from
Ref. 26 or when outside the range covered in Ref. 26, by using a-
symptotic formualas.
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where 1112 J I PI exp(arg P) d and lengths are in centi-

meters.

For sphere-cylinders, CD 0.9 and 4 C2/t _ 1. Thus, for r° in

centimeters

o - 220 r4 s(ka) 1112 cM2

The results of the integrations and the corresponding cross sections

for ro - 30 cm are given below:

f 2 x 107 cps 108 cps

1,12 0.09 0.01

60 m2  320m 2

To these a values should be added the return of the trail region

between the nose cone and the beginning of the expansion region x - x

and the return from the nose cone and surrounding plasma itself. The

return from the trail for x < x could, if desired, be computed in the

same manner using the Ne values numerically obtained by Feldman.(1)

However both these contributions will be negligible compared to the

above a values. Scattering from the nose cone itself will yield a

a < 0.5 m.2 while the trail region for x< x is only about 10 ro in

length according to Ref. 2. Thus it too can have only a negligible

effect on a.

The trail length as measured to the position where N falls to

Ne 10 8 ciM3 is of the order of 3000 m, miile the radius within uhich

Ne •108/3 exceeds 2r 0 . 7hus, as pne would expect considering the

low reflectivity, the corresponding geometric cross section of the

trail viewed broadside exceeds its radar cross section.
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V. BASIC ELECTROMAGNETIC PROBLEM

In this Memorandum, the procedures used to estimate radar return

from a re-entry wake form a patchwork set of approximations. To be

sure, it is hoped they can yield computed results that agree with

experimental observation. In this section we will discuss the prob-

lems involved in obtaining solutions that are more realistic from

the electromagnetic aspect. Improvement of the wake-parameter compu-

tations and theory is not discussed.

We shall assume (for the most part) that the wake is composed of

a cylindrically symmetric distribution of Ne and v. This would, in

many cases, rule out consideration of wakes behind vehicles that are

following rapidly turning orbits or are unstable in flight. It also

rules out turbulent wakes if the scale of turbulence is not small

compared to the local radar wavelength in the wake. Turbulence of

a scale that is small compared with the electromagnetic waves also

presents two effects, the magnitude of which should be studied when

enough data on the details of the turbulence become available. The

first effect is that the turbulence will present to the electromagnetic

waves a somewhat random array of small inhomogeneities in index of

refraction. The Rayleigh scattering frnm these could probably be

handled by methods such as those presented by Landau and Lifschitz. (27)

The second effect of turbulence in an ionized medium is to produce a

nonuniform distribution of current whirls. These will yield an

effective magnetization current J and associated magnetization M

through U - curl M. Then B - Io (W + R) - pH, where nowi p ± o as

was previously assumed in the text. The additional difficulties pre-

sented to the electromagnetic problem by a variable permeability are

discussed below.

The electromagnetic problem is to find a solution of Maxwell's

equations which, far from the wake, behaves like the sum of a plane

wave incident on the wake and a scattered field. Alternatively, we

would look for the solution corresponding to an infinitesimal dipole

source at a finite minimum distance from the cylinder (Green's function).
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Let us consider the governing Maxwell's curl equations assuming
e time-dependence.

ourl1  - jw (27)

k2n2
curl -E =-- n (28)

These equations differ from the form of Eq. (1i) in that ýL is not

taken to be the permeability p0 of free space everywhere. We leave

P # 10 fo. the moment to bring out clearly the role a varying perme-

ability plays in interlocking the equations. By the vector identity

curl aP grada xF +a curlP

Eq. (28) may be rewritten as

curli k - i E+ grad ý±x . (29)

Taking the curl of Eq. (27) and substituting Eq. (29) yields the

results

carl curl - k2 n2  -X __grad d x (30)Po ý

When ýi is constant the last term vanishes and an equation involving

Ealone is obtained.

In all ionospheric work it is assumed that p - po, and the re-

sulting homogeneous equation is used. For example, the Epstein-layer

analysis used in Section III is based on Eq. (30) with 1 - o" This

is also assumed by DeRidder and Edelberg in Ref. 17. Through Eq. (33),

let us now set 4 - 4o" Furthermore, when n2 varies with only one

coordinate so that iso-n2 surfaces are planes, rectangular Cartesian

coordinates are best adopted. There is then the added bonus that

the xi (i - 1,2,3) component of curl curl E involves only the xi

component of 7. The plasma is electrically neutral in a macroscopic
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sense so that div E 0 0 and

curl curlE - grad-divE- 4E

where for a rectangular coordinate system VRE represents the operator

a 2 + 2 + 2

ax2 2 az2

Equation 30 becomes

2E + 2 + -Z + k)n E -0 (31)ax 2 ay 2 8Z 2

and this holds for each component of E separately. The equation for

E - E and n dependent on x only was used to derive the reflectivityy
formulas of Section III.

For cylindrical coordinates, only the z-component of curl curl

can be written out in a form containing only one component of E. Thus

with

2 IV .+- +b +-a
V ra 2 2(32)• " r br r2 ae2 az2

cyl ~

we have, for the z-component of the homogeneous form of Eq. (30)

V 2  Ez + n2 k2 E - -cyl z div - 0

The other two components of Eq. (30) mix Er, Ee, and Ez, so that a

separate equation cannot be obtained for Ee or Er alone. The right-

hand side is zero, since div Ea 0.

Before pursuing this line further, let us first observe how even

this decoupling is only one way since the assumption of spatially

varying conductivity or effective dielectric constant which led to
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a variable index of refraction n does not permit an equation in

alone to be written. Taking the curl of Eq. (29) yields

curl curl • I - ad p x (grad p x a) - wcul (grad p x
2p

-k2 n2 B~k 1 9ga(n)xErd 2 x owl. (314)
S-n

Again terms drop out if I is constant, which we once more assume.

If n2 is a function of r only, further simplification occurs in

the z-component equation, since grad n2 is in the r direction and

uence pad n2 x -z./dr 1 By Maxwel- as equations

LW (curl B)O0

The result is

2 k22 Hzn dn2 ( W- •'r b (3

Vc2  Hz +k n - n2 (35)

Finally, if only z-independent fields are permitted such as would

occur at broadside incidence for radar scattering from an infinite

circular cylinder, then bHr/bz - 0 and a separated equation for H7

results. Therefore, E. and Hz alone can be used to solve boundary

value problems of broadside scattering; and the field components Eej

Er r)lo and Hr my all be obtained by the simple differentiations

of Hz and Ez indicated by Maxwell's equations.
The equations to solve for Ez or Hz are each of the form

S+ 1 f(r) au 1 u +k 2 n2 u 0 (36)
Wer ( r)-os r2  V2

whee costnt ndn2depends only onr2. For Ez, f(r) al;
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d--).• •n o . (36) Permts 8699-atton

for Hz, f(r) - (1 - Z2 -). The form of Eq(
of variables. Thus •et

U o= } R (r) (37)u=sin m98

where

life + I- R' + (k2 n.2 -_ ) 0 (38)r r2

Were n a constant, the equation with f(r) - 1 would be simply that of

the cylinder functions z(knr). If A2 = a 2 - b2/r 2 with a and b con-

stants, we have as solutions cylinder functions of nonintegral order

Z (akr)

where

v n b.,J 2 k2 +m2

lix~ 2 B nd ix 2 ( 2 ~2 _2
In general as long as lir. rf(r) . B r and 1:: r2k n 2 Br 0 r r r- 0 =2 2"
where B, and B2 are bounded, solutions may be obtained by cla.sical
methods as power series in r or power series in r plus logarithmically

singular terms (the Bessel and Neumann cylinder functions in the above

examples).

We can solve the electrom•egnetic problem for broadside incidence

in a straightforward conventional way if we assume n - constant for

r > a. Then the conventional expansion of a plane wave in Bessel
functions JM (knr) can be used to express the incident wave. The

reflected wave is then expressed as a superposition of Hankel functions

with unknown coefficients to be determined. Using the requirement of

continuity in Ez or H,, these solutions can be matched to an expansion

of the field for r < a in terms of those nonsingular solutions of

Eq. (38) which correspond to the chosen functional form of n2 (r).
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This is exactly the procedure employed in the extensive digital

computations by Deflidder and Edelberg in Ref. 17, using several dif-

ferent functional forms and a wide range of parameter values.

To find the radar return from a nonuniform wake, one could use

the results of such computations in an approximate way similar to

that in which we used the Epstein reflectivity P and aa. For near-

broadside incidence the results should in fact be better if the

cylinder returns are available for the appropriate parameters. As

is clear from the above, the results of Ref. 7 are based entirely on

assuming broadside incidence. It can yield no results for off-

broadside incidence, whereas the otherwise less-applicable Epstein

reflectivity is not so limited, the effect of angle of incidence

being expressed by the factor C occurring in the arguments of the

gam functions in Eq. (22). Like-wise, the off-broadside solution

for perfectly reflecting cylinders is available in Ref. 19. Thus

the approximate methods used in this Memorandum can give off-broadside

results, although their accuracy will degenerate as the aspect angle

increases. Without successfully tackling the more general equations

given above in this section, the accuracy or lack of accuracy of the

approximate approach cannot really be gauged.
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